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1. Introduction

Within the past three decades, the methods for planning, design
and operation of water resource systems have been changing from
the use of "rules of thumb" and "engineering judgment" to the more
formal type of analysis based on mathematical models. Several
methods have been proposed to determine the storage capacities of
reservoirs to regulate flows with a given level of assurance. These
approaches can be classified as (a) empirical, based on equations or
graphical procedures developed from practical experiences, (b) ex
perimental, based on procedures developed using data generation
techniques, and (c) analytical, based on the theory of statistics,
probability and stochastic processes. Application of the theory of
stochastic processes in the design and operation of reservoirs has
emerged in recent years as one of the dynamic subjects in statistical
hydrology. It has attracted and has appealed to the engineers and
statisticians alike because of the inherent stochastic nature of hydro
logic phenomena.

Two analytical approaches in determining the required storage
capacity of a reservoir are the range analysis and the deficit analysis
of partial sums of random variables. Range analysis which assumes an
infinite reservoir i.e. topless and bottomless reservoir, is used in the'
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design of storage capacities for full regualtion of river flows. On the
other hand, deficit analysis which assumes a semi-infmite reservoir,
i.e., bottomless reservoir, is used in the case of partial regulation.

Exact and asymptotic expressions for the mean and the variance
of the range and deficit properties of partial sums of random variables
of stationary process for only small values of the sample size are
available in the literature. Approximate expression for the mean
range of linearly dependent normal variables has also been proposed •
elsewhere (Salas, 1972). For higher values of the sample size, how-
ever, the mathematical derivation for the mean and the variance of
range and deficit becomes extremely cumbersome.

Both the range and the deficit relate to the same stochastic
variable of the cumulated partial sums. But the exact form of their
relationships is not available. However, the relation of at least the
expected values of range and deficit may be investigated for particular
cases of practical interest. In this paper, the possibility of estimating
the mean and variance of deficit as function of mean range and "
sample size, respectively, is explored in cases where the stationary
input series into a reservoir is either an independent, first-order
Markov, or ARMA (1.1) process. The theoretical framework in range
and deficit analyses is given in Section 2. Some analytical results and
the experimental approach used in the study are presented in Section
3. The results of the simualtion studies are given in Section 4. The
paper ends with a summary and conclusions.

2. Range and Deficit Analysis of Water Storage
i

Let [X t ] be a sequence of random variables, and Sj = ~ X,
t= 1

where i =1, 2, ... , n. The random variableSj is called the cumulative
or partial sum. The maximum partial sum Mn , the minimum partial
sum mn , the range of partial sums Rn ; and the maximum accumulated
deficit of partial sums Dn for the sumple size n are defmed as
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mn =min [0,SI,S2"" ,Sn]

Rn =Mn - mn
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In storage analysis, the partial sum Sj represents the amount of
water in the reservoir. The required storage capacity is usually taken
as either the range R n or the deficit Dn , depending on whether it is
full regulation or partial regulation; the study of which is either
called range analysis or deficit analysis.

Range analysis is sometimes referred to as the infinite reservoir
theory. Although the object of analysis is simply the properties of
the partial sums of random variables, one may conceive the existence
of a reservoir that can store any water surplus and can supply any
water depletion. In deficit analysis, on the other hand, the sequence
[Sj] is interpreted to represent the storage level in a semi-infinite
reservoir which has a top but no bottom.

The exact expected range E(R n ) of random variables with a gene
ral covariance structure for the sample size n ~ 3 was first derived by
Salas (1972). He also gave approximate expressions for the mean and
the variance of the range of periodic-stochastic processes. Earlier,
Yevjevich (1967) conjectured that the expected range of linearly
dependent normal variables can be represented by

(2)

where Var (Sj) = i02 with 0 2 the population variance. In the case of
AR (I) sequence, this expression reduces to

E(R n )=4 i i -1/2 . [ I +~ j-r,1
1T j= 1 Z k= 1

(3)

•

Simulations carried out by Salas (1972) showed that .the variance of
the range is linearly related to the sample size n. Meanwhile, the lack
of theoretical work on defict analysis has been recognized by Gomide
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(1975) who first presented the analytical treatment of the distribu
tion of the deficit. He showed that the analytical approach to deal
with range and defict analyses for stationary random variables follows
directly from the theory of Markov chains. Troutman (1976) later
derived the asymptotic distribution of the deficit Dn for the general
case of dependent, periodic net inputs and the special cases of de
pendent, non-periodic net inputs to the reservoir.

For the special case of the sample size n=l, the exact expected
values E(Rn ) and E(D n ) for independent standard normal variables
are given by Anis and Lloyd (l953) and Gomide (l975),respectively,
as

•

and
I

E(D} ) = - ~ 0.3989
yIn

(4)

(5) ..
These expressions ar~ also valid even for dependent normal variables:

, since only one random variable is considered. Therefore, all curves of
E(D n ) versusE(R n ) must pass through the point (0.3989, 0.7978).

On the other hand, the asymptotic expressions for E(R n ) and
E(D n ) are given by (Gomide, 1975 and Troutman, 1976)

E(R n ) = j 8n .a (6)
1T

and •
E(Dn ) = j 1f; .a (7)

Combining the above equations yields the asymptotic relation bet
ween E(Dn ) and E(Rn ) as

(8)
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Asymptotically, the mean deficit as function of the mean range can
be determined from the line with slope equal to n/4 and passing
through the origin.

3. Experimental Approach in the Analysis ofRange and Deficit

For practical applications, a simple relation between E(Dn ) and
E(Rn ) for moderate sample size n is very useful. In this study, the
data generation method is used to determine the means and variances
of Rn and Dn for sample sizes n = 2, 3,4,5,10,15,20,25,30,40,
SO, 60, 100, 250 based on a sample of 100,000 normal random
numbers. The sequences of net inputs into the reservoir generated are
either independent normal variables, first-order Markov dependent
or AR(1) variables, and autoregressive moving average (ARMA(1, 1))
dependent for various values of the parameter set.

Based from preliminary experimental results, a high linear cor
relation exists between E(Dn ) and E(Rn ). Moreover, experimental
curves obtained by data generation suggest that the variance of
deficit is linearly related to the sample size n. Thus, the empirical
approach used in this study is to relate E(D n ) to E(Rn ) and the
Var(D n ) as a function of the sample size n by the least squares fit
ting techniques. Specifically, E(Dn ) and Var(Dn ) are expressed as

E(Dn ) =A + B . E(Rn )

Var(D n ) =a2 (A +B . n)

(9)

(10)

where the A's and B's are parameters to be estimated and a2 the
.. variance of the sequence.

4. Results and Discussion

Using the regression parameters A and B estimated via simulation
and substituting the expression for E(Rn ) given by Eq. (3) into Eq.
(9), the E(Dn ) of the independent standard normal variables is esti
mated. Figure 1 shows the comparison of the expected deficit
obtained from simulated samples and those computed by Eq. (9) for
the independent standard normal variables. The relative differences
are less than 2.0 percent for sample size n greater than 3.
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The exact variances of the deficit and the range for finite values
of n are not known even for i.i.d normal variables. Thus, an approx
imate equation is obtained using the data generation method. The ex
perimental curve for VAR(Dn ) is derived by simulation. The plot of
the values of VAR(Dn ) against n suggests that a straight line fit is a
good approximation. For i.i.d standard normal variables, Figure 2
shows the plot of Var(Dn ) against n for n up to 250. The straight line
fit shows to be a good approximation.

In the case of the first-order Markov model with p =0.2, 0.4, 0.6
and 0.8, the same procedure used for the independent standard nor
mal variable is followed to estimate the values of the mean and var
iance of deficit. Figure 3 shows the linear regression parameters of
Eq. (9) for various values of p used for the estimation of expected
deficit. The plot is also particularly useful for finding the values of A
and B for other values of p not used in the simulation.

Experimental results also show a good straight line relationship
between E(Dn ) and E(R n ) for the first-order Markov model. For
instance, Figure 4 shows the linear relationship between E(Dn ) and
E(Rn ) for p =0.20.

Figure 5 through 8 show the comparison of the expected deficit
determined by data generation and by the approximate expression
(Eq, 9) for various values of p and sample size n. The plots indicate
that for p ~ 0.60, Eq. (9) is a good approximation although for
practical purposes it can be used for any value of p.

As regards the variance of deficit, experimental data obtained by
simulation for the variance of deficit plotted against n indicate that a
straight line fit is adequate in cases of n ~ 5. Therefore, the variance
of deficit is approximated as a linear function of n as in Eq. (10)
where the linear regression coefficients A and B are functions of p.
Figures 9 through 12 show the plots of Var(Dn ) against n up to 250
for various values of p. It is evident that the straight line fit is a good
approximation.

As far as the ARMA(1,1) model is concerned, O'Connell (1971)
pointed out that part of the parameter space of the ARMA(1,1)
model that is of particular interest in synthetic hydrology is when
~> () > O. Thus, three combinations of the parameter set within the
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parameter space of the ARMA(1,1) model are considered. The plots
of E(Dn ) obtained from simulated samples and estimated by Eq. (9),
and Var (Dn ) against n as estimated by Eq. (l0) are shown in Figures
13 through 17. It is shown that Eq. (9) is reasonable approximation
to E(Dn ) of the ARMA (1,1) model. Furthermore, the plots also
show that the linear function approximation of the Var(Dn ) as func
tion of n is also quite good.

5. Summary and Conclusions

Range analysis and deficit analysis are two analytical approaches
in determinig the storage capacity of a reservoir. The range is used
for full regulation of the river discharges while the deficit is used in
the case of partial regulation.

Exact expressions for the mean and the variance of the range and
the deficit of partial sums of stationary random variables are not yet
available for moderate sample sizes. However, approximate expres
sion for E(Rn ) of linearly dependent normal variables has been pro
posed elsewhere. Inasmuch as the range and the deficit both relate to
the same stochastic property of the cumulative sums, this paper aims
to determine a simple relation between the derived variables. The
E(Dn ) and Var(Dn ) are estimated as simple linear function fo E(Rn )

and' n, respectively. Results indicate this approach is a reasonable
approximation.

It has been found elsewhere (Gomide, 1975) that the asymptotic
distribution of deficit, when corrected for the mean and the variance
of the deficit, provides a good approximation of the exact distribu
tion of the deficit of stationary series. Thus, once the mean and the
variance of deficit have been estimated, the distribution of deficit
for given sample size can be approximated by correcting the stand
ardized asymptotic density for the mean and variance of deficit.
Thus, any design criteria other than the expected value can then be
used in the design of storage capacity considering the associated
risk and uncertainty.
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Figure 1. Comparison of the expected deficit obtained from
simulated samples and computed by Eq, 9 for
independent standard normal net inputs.
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Figure 11 Variance of the deficit obtained from simulated
samples and the fitted linear function for the
AR (I) model with cj>= 0.06
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ARMA (1.1) model with parameters
ep =0.990, (J=0.368.

Figure 14. Comparison of the expected deficit obtained from
simulated samples and computed by Eq. for the
ARMA (1.1) model with parameters
ep =0.90, (J=0.627. VI



VadO)
n -0\

Computed by Eq.

~

~

~
~

n

250200150100

Computed from simulated samples

50

•

E{D )
n

30

50

20

60

40

n

250200150

Computed by Eq.

• Computed from simulated samples

100

700

300

200

500

400

600

Figure 15. Variance of the deficit obtained from simulated
samples and the fitted linear function for the
ARMA (1.1) model with parameters rf>= 0.900,
8 = 0.627.

Figure 16. Comparison of the expected deficit obtained from
simulated samples and computed by Eq, for the
ARMA (1,1) model with parameters rf> =0.90, 8 =0.10.

• • • .' •



..
RANGE AND DEFICIT

Vor(D )
n

17

Computed from simulateo samples

Computed by Eq.

•

•

•

500

450

400

350

300

250

200

150

100

50

o •o

•

I

20
1

40
I

60 80
·1

100 120
n

•

Figure 17. Variance of the deficit obtained from
simulated samples and the fitted linear
function for the ARMA (1,1) model with
parameters rp =0.900, 8 = 0.100.



18 F. P. LANSIGAN

REFERENCES

•

Anis, A. A. and E. H. lloyd, 1953. "On the range of partial sums of a finite
number ofindependent normal variates", Biometrika, 40, pp. 35-42.

Gomide, F. L. S. 1975. "Range and deficit analysis using Markov chains",
Hydrology Paper No. 79, Colorado State University, Fort Collins, Colorado.

0' Connel, P. E., 1971. "A simple stochastic modelling of Hurt's law", Int.
Symp. on Mathematical Models in Hydrology, Warsaw,pp. 327-358. ..

Salas-La Cruz, J. D. 1972. "Range analysis for storage problems of periodic
stochastic processes", Hydrology Paper 57, Colorado State University, Fort
Collins, Colorado.

Troutman, B. M., 1976. "limiting distributions in storage theory", Ph.D. Thesis,
Colorado State University, Fort Collins, 162 pp.

Yevyevich, V. M., 1967. "Mean range of linearly dependent normal variables
with applications to storage problems", Water Resources Res. Vol, 3, pp.
633-671.

ACKNOWLEDGMENTS

The author would like to thank the University of the Philippines at Los
Banos - For Foundation Program on Environmental Science and Management
(PESAM) for the fellowship grant and the Il.S, National Science Foundation
Project No. CEE-8110782 "Stochastic Modelling of Geophysical Time Series"
at Colorado State University for the financial support.

•

•


